Region A contains all the stars $(N_A = 249)$ of the northern part of the sky and of the zodiac which are located on the side of the Milky Way containing the point of the spring equinox.

Region B is a similar region $(N_B = 262)$ located on the other side of the Milky Way.

Region Zod A contains all the zodiacal stars ($N_{\text{Zod }A} = 124$) from region A and consists of six constellations: Gemini, Cancer, Leo, Virgo, Libra, Scorpius.

Region Zod B contains all the zodiacal stars ($N_{\text{Zod }B} = 168$) from region B.

Region C contains all the southern stars $(N_C = 116)$ located on the same side of the Milky Way as region A.

Region D contains all the southern stars $(N_D = 143)$ located on the same side of the Milky Way as region B.

Region M is the Milky Way $(N_M = 94)$.

More details are found in Table 2.

Table 2

(G)	Baily's number of stars in a region before cleaning up the catalogue	Total number of stars in a region after cleaning up the catalogue
\overline{A}	1–158, 424–569	249
В	286–423, 570–711	262
C	847-997	116
D	712-846, 998-1028	143
M	159–285	94
$\operatorname{Zod} A$	424–569	124
$\operatorname{Zod} B$	362 – 423, 570 – 711	168

Let us consider a "large" group of stars R and determine the parameters $\hat{\gamma}_R$ and $\hat{\varphi}_R$ using the above relation (4) where one should replace G by R.

Theorem 1. Let us suppose that for all stars $i \in R$, the parameters γ_i and φ_i are equal for all i (see (1) and (2)) and coincide with γ_R and φ_R , respectively. Then the values $\hat{\gamma}_R$ and $\hat{\varphi}_R$ have the following properties:

(1) $\hat{\gamma}_R$ is a nonbiased estimate of the value γ_R having a normal distribution with a variation

$$\delta^2(\hat{\gamma}_R) = d\big[N_R\big(s_{20}\cos^2\varphi_R + 2d_0\cos\varphi_R\sin\varphi_R + c_{20}\sin^2\varphi_R\big)\big]^{-1},$$