
1. 
PTOLEMY’S CONCEPT OF THE ECLIPTIC TILT
ANGLE VALUE AND SYSTEMATIC ERROR γ

Tilt angle ε(t) between the ecliptic and the equa-
tor is one of the most important values in astron-
omy. It is necessary to know this angle in order to es-
timate the ecliptic coordinates of the stars, regardless
of the exact method used for said estimation. One can
use the astrolabe, as the Almagest text suggests, or
use special cosmospheres for conversion from equa-
torial coordinates, as it was done in the Middle Ages.
Other methods counld also have been used, qv in
Chapter 2 and the Introduction. It is presently known
that the angle of ε(t) varies over the course of time
according to the following rule:

ε(t) = 23°27'8.2849" + 46.8093"t + 0.0059"t2 – 0.00183"t3,

where t stands for time counted in centuries back-
wards from 1900 a.d. (see formula 1.5.3).

The text of the Almagest contains detailed de-
scriptions of how angle ε should be measured, and
also the actual instruments that were used for this
purpose, qv in Chapter I.12 of the Almagest ([1358]).
It is claimed that these measurements resulted in the
calculation of the 2ε value that equalled 11/83 of a full

circle, or, in modern terms, εA = 23°51'20". Here the
value of εA stands for the value of angle ε known to
the author of the Almagest.

When the author of the Almagest was compiling
the star catalogue, he must have used a known value
of angle ε, recording it with his instrument (astrolabe,
cosmosphere etc). The error in the estimation of the
real ε value made by the author of the catalogue
would result in the entire celestial sphere as a whole
shifted by a certain angle equal to the rate of this
error. In other words, the error made in the repre-
sentation of angle ε on the astronomical instrument
leads to a systematic error inherent in the coordi-
nates of all the stars in the catalogue – or, more specif-
ically, the part of the catalogue that was measured
with this instrument. It is easy enough to understand
that a systematic error of this sort would primarily af-
fect the latitudes of the stars. It is this very systematic
error that we educed in Chapter 6 when we were try-
ing to calculate γstat(t) for different values of t. The
temporal dependency of the error is primarily de-
fined by the true value of angle ε(t) changing grad-
ually over the course of time. This alteration is uni-
form and virtually linear within the confines of the
a priori chosen time interval 0 ≤ t ≤ 25.

When the author of the Almagest star catalogue
made a mistake in the determination and the fixation
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of angle ε with his instrument, he altered the value
of ε, making it either greater or smaller than the real
value; the catalogue would thus either gain or lose age
according to the tilt of the ecliptic to the equator. Any
of these possibilities could become a reality with the
probability of 0.5. What we observe de facto is a man-
ifestation of the most likely option, namely, the value
of ε as represented by the Almagest catalogue equals
the real value of ε(t) for the approximate epoch of
1200 b.c., qv in Chapter 6. The compiler of the
Almagest had thus made the star catalogue a great
deal older.

Let us assume that the Almagest catalogue was
compiled in time moment t and that its author con-
sidered the tilt angle between the ecliptic and the
equator to equal 23°51'20", which is the value stated
in the Almagest. Let us also assume that the compiler
of the catalogue tried to fix this value of the angle on
his astronomical instrument designed for the esti-
mation (via direct observation or re-calculation) of
ecliptic stellar coordinates. If we are to consider that
the observer’s error value lies within the allowed range
±∆ε defined by the instrument manufacture preci-
sion, the summary error of angle ε as fixed by the in-
strument would equal 

εA – ε(t) ± ∆ε = 23°51'20" – ε(t) ± ∆(ε).

Let us compare the value of this error with the con-
fidence strip γstat(t) ± ∆γ of systematic error γ as well
as the set of γ for which it is possible to superimpose
the stellar configuration of the Almagest’s informative
kernel with the corresponding calculated stellar con-
figuration, and with guaranteed latitudinal precision
rate equalling 10', qv in Chapter 7, which also tells us
that the last set is non-empty for all intervals but 6 ≤
t ≤ 13. Let us choose the values estimated by celestial

area Zod A for γstat(t) since, as it has been stated above,
Almagest catalogue part Zod A possesses a single sys-
tematic error γ. The confidence strip of γ is more nar-
row for this part of the catalogue; furthermore, all the
stars of the informative kernel are either located in Zod
A or its immediate vicinity, qv in Chapter 7.

In fig. 8.1 we see the confidence strip γstat(t) ± ∆γ
estimated by celestial area Zod A with a confidence
level of 0.998. We also see the set of acceptable γgeom(t)
geometrical dating procedure values for which the
maximal latitudinal discrepancy of the Almagest in-
formative kernel stars does not exceed 10', qv in Chap-
ter 7. Finally, in fig. 8.1 we see a dependency graph for
the aberration of ε = εA as given in the Almagest from
the real value of this angle: γAlm(t) = εA – ε(t).
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Fig. 8.1. Confidence strip γstat(t) ± ∆γ estimated for Zod A:
the set of possible γgeom(t) values for the geometrical dating
procedure, as well as the dependency graph for the deviation
ε = εA, as indicated in the Almagest and the true value of
this angle.
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0.5
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2.2
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1.0 (6.28)

0.7

1.4

2.9
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Table 8.1. Arc lengths of 2.5', 5', 10' and 1° in millimetres as indicated on the rings whose radius equals 50 cm, 75 cm and 1 m.



Fig. 8.1 demonstrates that the graph of γAlm(t) to
be in close propinquity with the “geometrically valid”
area (γ, t)geom and the confidence strip that surrounds
γstat(t), albeit not crossing it – the latter would take
place if we transposed the graph of γAlm(t) upwards
by circa 2.5'. Then it shall automatically begin to cross
both the confidence strip and the “geometrically
valid” area shifted towards the respective edge of the
confidence strip. A shift of 6.5' upwards shall make
the graph of γAlm(t) virtually coincide with the graph
of γstat(t), while still crossing the “geometrically valid”
area. The value of the shift needed for this purpose
corresponds to the allowed variation of ∆ε with εA

fixed on the instrument and gives us an idea of just
how precise the manufacturers of the astronomical in-
strument could have been. Table 8.1 contains the arc
length values of 2.5', 5', 10' and 1° (in mm) on an as-
tronomical instrument (astrolabe, cosmosphere etc)
with a radius of 50 cm, 75 cm and 1 m.

From table 8.1 we can see that for the ε angle fix-
ation error ∆ε of an astronomical instrument, the
value of 2.5'-5' is very real for the Middle Ages. It cor-
responds to the linear size fluctuation range of a mere
0.5-1 mm.

Thus, the ecliptic tilt values that we have discov-
ered in the Almagest catalogue correspond with the
value of εA contained in the text of the Almagest.

2. 
THE PETERS ZODIAC AND THE SINE CURVE

OF PETERS

Paragraph 1. The book of Peters and Knobel
([1339]) contains an important discrepancy graph
that Peters obtained from his analysis of the Almagest
catalogue. The sine curve of this graph shall be re-
ferred to as the “latitudinal sine curve of Peters” (see
[1339], page 6). This curve indicates the present of
certain systematic errors in the Almagest.

In the present section we shall explain why the
“sine curve of Peters” is inherent in the Almagest cat-
alogue.

Paragraph 2. Let us consider the location of the
ecliptic ∏ for t = 18, or 100 a.d. We shall mark the
vernal equinox point Q(18) upon it. We shall proceed
to divide the ecliptic into 360 degrees, using the ver-
nal equinox point for initial reference, qv in fig. 8.2.

Now let us mark the positions of the real stars for
100 a.d. as black dots on the celestial sphere, and the
positions of the same stars in the Almagest as white
dots. Respective dot pairs (black and white) are linked
together with segments in fig. 8.2, so as to make the
correspondences clear.

We can calculate the latitudinal difference for each
such pair, or the latitudinal discrepancy in other
words. We are thus calculating the difference between
the latitude of star i in the Almagest and the real lat-
itude of this star for 100 a.d. Peters studies the Zodi-
acal stars of the Almagest from this position in [1339].
However, he appears to have missed some of them.
The Almagest contains a total of 350 Zodiacal stars.
As we point out in [1339], page 17, Peters only chose
218 stars for his study of the Zodiacal star longitudes,
without specifying the selection principles. The exact
amount of stars studied by Peters in his research of
he latitudes isn’t given anywhere in [1339], but one
can assume him to have take the same stars as he did
in his research of the longitudes.

Let us calculate latitudinal discrepancies for all
the stars from the zodiacal list and represent them on
the graph. This shall require taking the longitude of
the stars and marking it on the horizontal axis, and
then presenting the value of the latitudinal discrep-
ancy on the vertical. This shall result in a certain ag-
glomeration of points drawn on the plane which we
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Fig. 8.2. Position comparison for real stars in 100 a.d. and
their positions as indicated in the Almagest.

Ecliptic ∏(18) for 100 a.d.



shall be referring to as the “error field”. Once we di-
vide the longitudinal scale into 10-degree segments
and average each one of those, we can build the
smoothing curve as seen in fig. 8.3. This curve, in
turn, can be approximated by the optimal sine curve
according to the minimal criterion of the mean-
square discrepancy.

A similar procedure can be performed for the lon-
gitudes. We shall come up with another smoothing
curve as a result which is represented in fig. 8.3 as a
dotted curve. We shall talk about this curve later.

Let us find a natural explanation of these curves.

Paragraph 3. Let us begin with a study of the lat-
itudinal sine curve of Peters. We must note that the
natural mechanism that allows us to explain the in-
clusion of systematic errors into the latitudes of Zo-
diacal stars. This is the error in the location of the ob-
server’s ecliptic plane as compared to that of the real
ecliptic for the moment of observation which isn’t
known to us a priori.

Let us return to our consideration of ecliptic ∏(t0)
for observation moment t0. Equinox point Q(t0) is
marked in fig. 8.4 as the beginning of coordinates.
Above we see the latitudinal error field for t = 18. Let
us do the same for the Almagest catalogue star ob-
servation moment t0 and draw the corresponding lat-
itudinal error field in fig. 8.5. The smoothing curve
shall be marked c(X, K(t0, 0, 0) – see the dotted curve
in fig. 8.5. Let us explain this indication. As above, X
is used for referring to the Almagest catalogue. K(t,
β, γ) is used for referring to the real catalogue K(t) re-
ferring to real star positions for epoch t perturbed by
parameters β and γ, qv in Chapter 6. Thus, K(t0, 0, 0)
is a catalogue which was not subject to random per-
turbation that shows real star positions for observa-
tion moment t0 that we do not know a priori.

We already explained it in Chapter 6 that in order
to find the optimal ecliptic rotation in the square av-
erage sense, we have to solve the correspondent re-
gression problem. For this end we shall have to use a
two-parameter sinusoidal family as the family of ap-
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Fig. 8.3. The smoothing curves of Peters for 100 a.d. (latitu-
dinal and longitudinal).

Longitudes

Latitudes

The Almagest

Fig. 8.4. The system of accounting for latitudinal errors.

The ecliptic

Fig. 8.5. The dotted curve indicates the smoothing curve
c(X, K(t0, 0, 0). The continuous curve is the approximating
sinusoid s(X, K(t0, 0, 0).

Smoothing curve

Approximating sinusoid



proximating curves. The first parameter of this fam-
ily shall be defined by the amplitude of a sine curve,
and the second – by its phase. We solved this prob-
lem in Chapter 6 – for the Almagest in general as well
as its different parts in particular; among the latter –
the Zodiac which is of interest to us at the moment.
Let us define the optimal approximating sine curve
as s(X, K(t, 0, 0)) – see the continuous curve in fig.
8.5. The parameters of the sine curve shall be defined
as A* (amplitude) and ϕ* (phase).

Paragraph 4. It would be a good idea to discuss
the concept of approximating sine curve phase. The
matter is that the phase is estimated with the preci-
sion rate of 15 degrees at best. Let us provide two vir-
tually equivalent explanations to this fact. The first is
based on the analysis of how the observer’s error in
the estimation of the ecliptic plane affects the phase
of the approximating sine curve. One sees the fol-
lowing objects in fig. 8.6. Firstly, it is the real equator
for observation moment t0. This equator, as we have
explained above, can be considered all but identical
with the observer’s equator. Secondly, it is the real
ecliptic for moment t0 and the observer’s ecliptic.

We know the angle between the observer’s eclip-
tic and the real ecliptic to approximately equal 20',
which is the observer’s error γ. The angle between
the equator and the ecliptic equals ε, or circa 23°. It
doesn’t matter which one of the ecliptics we are con-
sidering at the moment since the angle between them
is minute as compared to 23°. The arc in fig. 8.6 rep-
resents the observer’s error in estimating the vernal
equinox point. As we already know, this error is
roughly equivalent to 10', which is the scale grading
value of the Almagest catalogue. Let us assume arc RQ

is approximately equal to 10'; in this case arc distance
WQ shall be approximately equal to 10' × sin20°, or
roughly 5'. In this case, arc distance ϕ, or arc MQ
from fig. 8.6, shall be equal to circa 5' / sin20', or
around 15°. All we have to point out us that arc MQ
gives us a precise representation of the approximat-
ing sine curve phase. We are counting the sine curve
phase starting with the vernal equinox point Q(t)
upon the real ecliptic ∏(t).

Thus, several-minute perturbations in observer
ecliptic estimation perturb the sine curve phase by a
factor of several degrees, making the phase “unstable”.

The very same phenomenon receives an explana-
tion if regarded as part of the smoothing curve c(X,
K(t, 0, 0)) approximation problem with the optimal
sine curve of s(X, K(t, 0, 0)).

Approximating the smoothing curve by the opti-
mal sine curve we reach the minimal value of the
possible square average error. One has to allow for a
certain variation of this minimum due to the fact
that the optimal sine curve’s parameters in general fail
to concur precisely with the actual observation error.
Allowing for 5-minute variations of the square aver-
age aberration minimum we must note that a 10-de-
gree phase variation of a sine curve with the ampli-
tude of 20' changes the ordinate of any sine curve
point by a maximum of 5'. For a standard sine curve
with an amplitude of 1 and a phase of 0 drawn as an
continuous curve in fig. 8.7 segment OA shall be ap-
proximately equal to arc OB, since we are presently
considering segment OA comparatively small, or
equalling 1/6 radians (10 degrees). In this case seg-
ment AB comprises 1/6 of the amplitude, or approx-
imately 3.3'. Therefore, a three-minute perturbation

chapter 8 tilt angle between the ecliptic and the equator in the almagest  | 203

Fig. 8.6. The observer’s ecliptic, the real ecliptic and the real
equator.
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Fig. 8.7. Alteration of the sinusoid phase.



of the square average discrepancy can result in a ten-
degree phase alteration of the approximating optimal
sine curve.

Paragraph 5. In the preceding chapters we already
estimated the possible dating interval of the Almagest
catalogue, namely, we discovered that t0 lies on the in-
terval between 6 and 13, or approximately 600 a.d. and
1300 a.d. Therefore it would be particularly interest-
ing if we studied the approximating sine curves s(X,
K(t, 0, 0)) for this very interval of possible datings. It
turns out that they don’t alter too much inside the in-
terval between 600 a.d. and 1300 a.d., or prove to be
poorly-dependent on t0. More precisely, the maximal
amplitude of A* changes from 26' for t0 = 6 to 20' for
t0 = 13 inside the interval between 600 a.d. and 1300
a.d. The corresponding phase shifts of ϕ* take place
between the values of –17° and –18° in relation to the

corresponding equinox point Q(t0) on the ecliptic
∏(t0). We can therefore regard any smoothing curve
c(X, K(t0, 0, 0)) as a “typical representative” of the
class, where t0 can assume any value from 6 to 13. It
would be natural to consider the middle of the time
interval, namely, the value of t0 = 9.

Let us demonstrate how the smoothing curve c(X,
K(t0, 0, 0)) looks at t0 = 9 before and after the opti-
mal sine curve subtraction, or, in other words, before
and after the exclusion of the systematic errors that
we discovered. In fig. 8.8 one sees that the smooth-
ing curve c(X, K(t0, 0, 0)) is close to a sine curve for
t0 = 9. The parameters of the optimal sine curve for
t0 = 9 are as follows: the amplitude equals to 24', and
the phase to –17°. The smoothing curve is drawn as
a dotted curve in fig. 8.8. Excluding observer’s eclip-
tic estimation error from catalogue X is equivalent to
subtracting the optimal sine curves with the param-
eters being A* = 24' and ϕ* = –17° for t0 = 9. As a re-
sult, the latitudinal discrepancy smoothing curve as-
sumes the form drawn as a continuous curve in fig.
8.8. One can clearly see the difference between the
dotted curve and the continuous curve; the latter fluc-
tuates around the abscissa axis and corresponds to the
zero average error of the observer in the estimation
of the ecliptic position. It is obvious that the error field
is now approximated by a degenerate sine curve, or
a mere straight line that becomes superimposed over
the abscissa.

Conclusion. The compensation of observer er-
rors on the discovered possible dating interval of the
Almagest catalogue, namely, 600-1300 a.d., results in
the disappearance of such effects as the latitudinal
sine curves of Peters.

Paragraph 6. Let us return to the sine curve of
Peters in the latitudes of the Almagest catalogue. Since
it is possible that Peters did not account for all of the
Zodiacal stars in his calculations, we have re-calcu-
lated and built a graph similar to that of Peters for
t = 18, or 100 a.d., qv in fig. 8.3. We have considered
all the Zodiacal stars of the Almagest except for sev-
eral rejects with a latitudinal discrepancy of more
than 1.5°. The data were taken from [1339]. We
processed nearly all of 350 Zodiacal Almagest stars.

The result of our calculations can be seen in figs.
8.9 and 8.10 together with the latitudinal error field
of the Almagest Zodiac for t = 18. This field consists

204 |  history: fiction or science? chron 3  |  part 1

Fig. 8.8. The Almagest, t = 9. The dotted curve represents the
initial Peters sinusoid, and the continuous curve stands for
the same after the subtraction of the systematic error value.



of 350 points scattered across a plane. The continu-
ous zigzag represents the smoothing curve c(X, K(t0,
0, 0)). It is plainly visible that it bears qualitative sem-
blance to the curve of Peters in fig. 8.3. In general, the
behaviour of our adjusted curve in fig. 8.9 is similar
to that of the Peters curve in fig. 8.3. However, there
are some minor differences which are apparently ex-
plained by Zodiacal star selection principle used by
Peters which remains unknown to us.

In fig. 8.10 one also sees the optimal sine curve s(X,
K(18, 0, 0)). Its parameters are as follows: an ampli-
tude of 16' and a phase of –22°, qv in Chapter 6.

Paragraph 7. Above we have considered various
properties of the latitudinal error field as related to
the real observation moment t0. Let us now examine
the same field for the arbitrary moment t which does
not coincide with t0. We see the following in fig. 8.11:

1) The real ecliptic ∏(t) for observation moment t0.
2) Observer ecliptic represented by a dotted curve

and not equal to ∏(t0) due to the effects of the ob-
servation error made by the Almagest catalogue com-
piler.

3) The real ecliptic ∏(t) for any other fixed mo-
ment t.

Vernal equinox points Q(t0) and Q(t) are drawn
on the ecliptics ∏(t0) and ∏(t). Point N corresponds
to the crossing of said ecliptics. The distance between
point M and ecliptic ∏(t) is rather small, that is to
say, it doesn’t exceed 20' if |t – t0| does not exceed
2000 years. Therefore, the latitudinal error field as re-
lated to ecliptic ∏(t) should be approximated as a
sum of two sine curves. The first results from obser-
vation error made in time moment t0 and was dis-
cussed in detail above. The phase of this sine curve
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Fig. 8.9. The Peters curve that we calculated for the Almagest zodiac, t = 18.



206 |  history: fiction or science? chron 3  |  part 1

Fig. 8.10. Error field for the Almagest zodiac, t = 18. Zodiacal stars are represented by black dots, others – by light ones. The
zigzag is the Peters curve approximated by 10-degree intervals, whereas the smooth curve stands for the optimal sinusoid.



as related to vernal equinox point Q(t) on ecliptic
∏(t) approximately equals the sum of its phase as re-
lated to vernal equinox point Q(t0) – see arc MQ(t0)
in fig 8.11, and the arc distance RQ(t). We are refer-
ring to an algebraic sum here, or a sum with either a
positive or a negative value. The arc RQ(t) equals the
precession value for the time t – t0.

The second sine curve st, t0
represented in fig. 8.12

as a continuous curve, results from the discrepancy
between ecliptic ∏(t) and ecliptic ∏(t0). It has an ap-
proximate amplitude of 47" / |t – t0|, qv in [1222] or
in Chapter 1. Its phase is estimated by precession for-
mulae from section 5 of Chapter 1 which were taken
from [1222] originally.

The resultant approximating curve represents the
sum of these two sine curves. This curve has a single
local maximum and a single local minimum upon the
circumference, or the ecliptic.

This implies the following simple statement. Let
us regard the two time moments of t0 and t. Then the
smoothing curve c(X, K(t0, 0, 0)) shall approximately

coincide with the sum of the two curves c(X, K(t, 0,
0)) ≈ c(X, K(t0, 0, 0)) + st, t0

. Thus we can claim that
a sine curve like that of Peters for time moment t ap-
proximates the sum of a similar sine curve for mo-
ment t0 and the one corresponding to the rotation of
the ecliptic over the time t – t0 (between t0 and t). This
is a general statement valid for all couples of t and t0.

Paragraph 8. Now let us consider the resultant
approximating curve for 100 a.d., or t = 18. We have
just explained that one needs to add up two sine
curves for this purpose. The first corresponds to the
real observation moment t0, and the second to time
moment t for which the resultant approximating
curve is calculated. Let us choose t0 = 9 as the “real
observation time”, or roughly 1000 a.d. This value of
t0 is the middle of the possible Almagest catalogue
dating interval between 600 and 1300 a.d., or t = 13
and t = 6, that we have discovered. The first sine curve
(see the dotted curve in fig 8.13) has the amplitude
of 24' and the phase of –5°, which is a sum of –17°
(see arc MQ(t0) in fig. 8.11), and 12°, of the preces-
sion for some 900 years.

The second sine curve (see the fine continuous
curve in fig. 8.13) corresponds to the choice of the
moment t = 18, or 100 a.d., qv above. Its amplitude
roughly equals 47" × 9 ≈ 7', qv above, and its phase
approximates 160°, qv in Chapter 1. On the fragment
between –20° and 160° as seen in fig. 8.13 this curve
is located under the abscissa, or has a negative value.
Adding up the two sine curves we shall get the re-
sultant approximating curve drawn as a bold con-
tinuous curve in fig. 8.13.

Thus, the latitudinal discrepancy sine curve dis-
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Fig. 8.11. The real ecliptic for the moment of observation,
the observer’s ecliptic and the position of the real ecliptic for
a different moment in time.

Ecliptic ∏(t)

Ecliptic ∏(t0)

Observer’s ecliptic

Fig. 8.12. A pair of sine curves whose sum roughly defines
the latitudinal error field.

Fig. 8.13. A sum of two sinusoids yields a Peters sinusoid
(bold curve).

Peters sinusoid



covered by Peters under the assumption that the Alma-
gest catalogue was compiled in 100 a.d. is a sum of
two sine curves, namely, the observation moment sine
curve resulting from the incorrect estimation of the
ecliptic position by the observer, and the sine curve
that results from the angle between the ecliptic of 100
a.d. and the ecliptic of the observation time.

Paragraph 9. Let us conclude with turning to the
longitudinal sine curve of Peters (see the dotted curve
in fig. 8.3). The mechanism described above explains
the genesis of the latitudinal sine curve; however, it
hardly affects the longitudes of the Zodiacal stars.
Therefore, the incorrect estimation of the ecliptic by
the observer does not result in a manifest longitudi-
nal sine curve. Nevertheless, we can witness a weakly-
manifest sine curve to appear in longitudes as well.
Let us assume that the mediaeval observer made an
error in his estimation of the vernal and autumnal
equinox points, or, which is virtually the same, meas-
ured the coordinates of the basis stars with insufficient
precision. Bear in mind that unlike the latitudes that
were always counted from the ecliptic ring of the as-
tronomical instrument, fixed in its construction with
a permanent error, stellar longitudes were counted off
several bright basis stars. Otherwise one would have

to measure angles larger than 180°, which is an ar-
duous procedure (see Chapters VII.3 and VII.4 of the
Almagest ([1358])). This circumstance is illustrated
in fig. 8.14.

Lack of precision in the estimation of the equinox
points by the observer shall lead to a de facto division
of the ecliptic into two unequal parts by the points
Q(t0) and R'(t0). Here R'(t0) stands for the erroneous
position of the autumn equinox point and R(t0) being
the real autumn equinox point. The length of arc RR'
may be rather small, around 10' – 15', remaining
within the precision threshold of the Almagest. Some
of the Zodiacal longitudes could be measured from
the vernal equinox point Q, or a certain group of
basis stars, whereas other longitudes would be meas-
ured from the autumn equinox point R, or from an-
other group of basis stars. As a result, stellar longitudes
on segment QmR' shall be “compressed” by roughly
15', whereas on segment QnR' they shall, on the con-
trary, be expanded by roughly 15'. Therefore, calcu-
lating the longitudinal discrepancy graph of the Zo-
diacal stars, we shall end up with a sinusoidal curve,
qv in fig. 8.14. Bear in mind the relatively small value
of the 10' – 15' error, which is the amplitude of the
longitudinal Peters sine curve as seen in fig. 8.3.
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Fig. 8.14. Longitudinal discrepancy graph of the zodiacal stars.

The “sinusoid” of longitudinal discrepancies


