
1. 
THE ECLIPTIC. THE EQUATOR.

PRECESSION

Let us consider the motion of the Earth along its
solar orbit. It is usually considered that it isn’t the
Earth itself that rotates around the Sun, but rather the
mass centre (gravity centre) of the Earth-Moon sys-
tem, or the so-called barycentre. The barycentre is
relatively close to the centre of the Earth as compared
to the distance between the Earth and the Sun. The
stipulations of the present work allow us to consider
the orbital motion of the barycentre around the Sun
identical to the orbital motion of the Earth itself.

Gravitational perturbations caused by planets cause
constant rotation of the barycentre orbit plane. This
rotation contains a certain primary sinusoidal com-
pound with very high periodicity. It is complemented
by certain minor variable fluctuations, which we shall
ignore. This rotating orbital plane of the Earth is called
the ecliptic plane.

Sometimes the term “ecliptic” is used for referring
to the circumference where the ecliptic plane crosses
the imaginary sphere of immobile stars. Let us as-
sume that the centre of this sphere coincides with the
centre of the Earth that lies on the ecliptic plane. In
fig. 1.1. it is indicated as point O. We can disregard

the motion of the Earth in relation to the distant stars
and consider it the immobile centre of the stellar
sphere. Our further references to celestial objects such
as the Sun, stars etc shall imply the identification of
said object with the point of its projection over the
sphere of immobile stars.

The ecliptic rotates with time, which is why it is
known as the “mobile ecliptic”. In order to refer to the
position of the mobile ecliptic at a given point in
time, let us introduce the concept of instantaneous
ecliptic for a given year or epoch. The conception and
the properties of instantaneous spin vector pertain to
the discipline of celestial mechanics. Fixed successive
instantaneous ecliptics for different epochs are some-
times referred to as fixed ecliptics of said epochs. For
instance, it is convenient to refer to the fixed ecliptic
for 1 January 1900. The position of the mobile eclip-
tic for any given point in time can be specified in re-
lation to a randomly chosen fixed ecliptic.

The Earth is considered a perfectly solid body in
celestial mechanics. It is well known that a solid body
possesses a so-called inertia ellipsoid, which is rigidly
defined by its three semi-axes. The rotation of a solid
body is characterised by the value and the spatial at-
titude of spin vector ω. Vector ω is sometimes re-
ferred to as the instantaneous axis of rotation. The
semi-axes of the inertia ellipsoid are orthogonal, and
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can therefore be used as an orthogonal system of co-
ordinates. Thus, vector ω can be defined by the pro-
jections of x, y and z over the axes of inertia. The mo-
ments of body inertia relative to these axes shall be
indicated as A, B and C, respectively. The rotation of
a solid body is described in the dynamic equations of
Euler-Poisson:

Ax⋅ + (C – B)yz = MA

By⋅ + (A – C)xz = MB

Cz⋅ + (B – A)xy = MC

In the right part of the equations we have the pro-
jections of vector M, known as the external couple in
relation to the mass centre, over the same axes.
Moment M results from the effect of solar and lunar
gravity on the ellipsoidal figure of the Earth. The Earth
is usually considered a two-axial ellipsoid rather than
triaxial – an ellipsoid of revolution, in other words.

The position of vector M in relation to the axes of
inertia changes rapidly, and these changes are of a
rather complex nature; however, the application of
modern theories of lunar and telluric motion makes
it feasible to calculate its evolution with sufficient
precision for any moment in time. This allows us to
solve the equation of Euler-Poisson, or calculate the
evolution of vector ω.

The “Tables of the Motion of the Earth on its Axis

and Around the Sun” ([1295]) compiled by the em-
inent American astronomer Simon Newcomb are
used in order to account for all the irregularities in-
herent in the motion of the Earth.

The study of cases (solid body configurations)
when the equations of Euler-Poisson can be solved
with sufficient precision comprises an important area
of modern theoretical mechanics, physics and geom-
etry.

Let us consider vector ω of instantaneous Earth ro-
tation. It defines the axis of rotation, or the instanta-
neous rotation axis. The points where it crosses the
surface of the Earth are known as instantaneous poles
of the Earth, whereas those where it crosses the ce-
lestial sphere, or the sphere of immobile stars, are
known as celestial poles (North and South). Let us
consider the plane orthogonal to the instantaneous
rotation axis of the Earth that crosses the mass cen-
tre of the Earth. Its intersection with the surface of
the Earth is known as the instantaneous equator of
Earth rotation, and the intersection with the celestial
sphere is referred to as the true celestial equator, ce-
lestial equator or equinoctial.

Fig. 1.1 depicts the celestial sphere. Its centre is
marked O. P stands for the North Pole of the ecliptic,
and N – for the celestial pole. The ecliptic and the
equator have two intersection points, which are known
as the vernal and autumnal equinox points (indicated
as Q and R in fig. 1.1, respectively). The illustration
also demonstrates the alterations of the star’s coordi-
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Fig. 1.1. The sphere of immobile stars. The ecliptic and
equatorial coordinate systems.

Fig. 1.2. Precession and nutation.



nates in relation to the two coordinate systems of the
celestial sphere – equatorial and ecliptic.

Let us now consider a coordinate system that
would not rotate together with the Earth, but be based
on the ecliptic instead. The new coordinate system
does not have to be orthogonal. The following axes
are normally used for such coordinate systems:

1) normal to the ecliptic plane;
2) the intersection axis of the ecliptic and equa-

torial planes, or the equinoctial axis;
3) inertia axis C.
The projections of instantaneous angular velocity

vector ω over these three axes are indicated as ⋅ψ,
⋅θ and

ϕ⋅ . We have thus expanded the Earth rotation rate
into three components. What is their geometrical
meaning? The value of ⋅ψ, is known as the Earth pre-
cession rate. This component defines the circular con-
ical motion of precession axis C, or the third axis of
inertia, around the normal OP, as shown in fig. 1.2.
Vector ω = ON follows this conical rotation. Let us
point out the close proximity of vectors ω and OC.
For approximated calculations we can assume vector
ω to coincide with axis OC.

Owing to precession, the equinox axis, or the in-
tersection of the ecliptic and the equator, rotates within
the ecliptic plane. The rotation of

⋅θ affects the incli-
nation of axis OC towards the ecliptic to a certain ex-
tent. Finally, the value of ϕ⋅ defines the rate of the Earth’s
rotation around axis OC. In theoretical mechanics the
value of ϕ⋅ is known as proper rotation rate. It is much
higher than the angular velocities of ⋅ψ and

⋅θ. From the
point of view of theoretical mechanics, this circum-
stance reflects the fact that the stable rotation of a solid
body occurs around the axis that happens to be the
closest to the axis of maximal inertia moment, or the
shortest axis of the inertia ellipsoid. Let us remind the
reader that the Earth is somewhat flattened at the poles.

Thus, ω = ⋅ψ +
⋅θ + ϕ⋅ (+ standing for the summa-

tion of vectors). Each velocity  ( ⋅ψ,
⋅θ and ϕ⋅ ) contains

a single constant (or nearly constant) component as
well as a great many small periodic ones, commonly
referred to as nutations. If we overlook them, we shall
come up with the following model of Earth rotation.

1. Constant velocity component ⋅ψ is called longi-
tudinal precession. It moves axis OC along the circular
cone with the approximate annual velocity of 50" (see
fig. 1.2). The equinoctial axis moves clockwise along

the ecliptic as seen from the side of its north pole. The
precession vector is directed at the ecliptic’s South
Pole.

2. Constant velocity component
⋅θ approximates

0.5" per year as of today.
3. Constant velocity component ϕ⋅ is the average

proper Earth motion velocity value with the perio-
dicity of one day anticlockwise around axis AC (as
seen from the North Pole of the Earth).

Let us note that axis OP, which is the normal to-
wards the ecliptic plane, belongs to the same plane as
vector ω, which represents the instantaneous angle ve-
locity of the Earth, and axis OC, or the third axis of
inertia. This plane rotates around axis OP due to pre-
cession.

Nutational components inherent in velocities  ( ⋅ψ,⋅θ and ϕ⋅ ) distort the above model – therefore, vector
ω doesn’t follow an ideal conical trajectory, but a
rather erratic wavy one instead, which approximates
the shape of a cone. The trajectory of the vector’s end
point is drawn as a wavy line in fig. 1.2.

The two circumferences that pertain to the celes-
tial sphere (the equator and the ecliptic) intersect at
the angle of ε = +23°27' in two points – Q and R, qv
in fig. 1.1. The Sun crosses the equator twice in these
points over the course of its annual voyage along the
ecliptic. Point Q, which is where the Sun enters the
Northern Hemisphere, is the point of the vernal equi-
nox. This is the point where the respective durations
of daytime and night time equal one another every-
where on the Earth. Point R corresponds to the au-
tumnal equinox (see fig. 1.1).

The mobile ecliptic is in constant rotation. There-
fore, the vernal equinox point constantly shifts along-
side the equator, simultaneously moving along the
ecliptic as well. The velocity at which the equinox
point travels along the ecliptic is the actual longitu-
dinal precession. The shift of the equinox points pro-
duces the equinox precession effect (see fig. 1.1).

2. 
EQUATORIAL AND ECLIPTIC COORDINATES

In order to record the observations of celestial
bodies, one needs a convenient coordinate system
that would allow one to fix the respective positions
of celestial bodies. There are several such coordinate
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systems – first and foremost, the equatorial coordi-
nates, which are defined as follows.

In fig. 1.1 we see the North Pole indicated as N and
the celestial equator, which contains arc QB. We can
estimate the plane of the celestial equator to coincide
with the plane of the Earth equator, given that the
centre of the Earth corresponds to point O, which
stands for the centre of the celestial sphere. Point Q
is the vernal equinox point. Let point A represent a
random immobile star. Let us consider meridian NB,
which crosses the North Pole and star A. Point B is
the intersection of the meridian with the equatorial
plane. Arc QB = α corresponds to the equatorial lon-
gitude of star A. This longitude is also known as “di-
rect ascension”. The direction of the arc is opposite
to the motion of Q, which is the vernal equinox point.
Therefore, direct ascensions of stars attain greater val-
ues over the course of time due to precession.

Meridian arc AB = δ corresponds to the equato-
rial latitude of star A, which is also referred to as the
declination of star A. If we are to disregard the fluc-
tuations of the ecliptic, the declinations of the stars
located in the Northern Hemisphere diminish with
time due to the motion of vernal equinox point Q.
The declinations of the stars in the Southern Hemi-
sphere slowly grow with time.

The daily motion of the Earth does not alter the
declinations of the stars. Direct ascensions change in
a uniform fashion and are affected by the Earth’s ro-
tation velocity.

The ecliptic coordinate is also rather popular, and
it was used very widely in the ancient star catalogues.

Let us consider the celestial meridian that crosses
the ecliptic pole P and star A (see fig. 1.1). It crosses
the ecliptic plane in point D. Arc QD corresponds to
ecliptic longitude l in fig. 1.1, and arc AD represents
ecliptic latitude b. Precession makes arc QD grow by
circa one degree every 70 years, which results in the
uniform growth of the ecliptic longitudes.

If we disregard the fluctuations of the ecliptic, we
can consider ecliptic latitudes b stable as a first ap-
proximation. This is the very thing that made eclip-
tic coordinates so popular with the mediaeval as-
tronomers. The advantage of the ecliptic coordinates
over the equatorial ones is that the value of b is con-
stant, whereas the value of l grows with the course of
time as a result of precession. The alterations of equa-

torial coordinates caused by precession conform to
much more complex formulae, which account for
the orthogonal turn of the ecliptic that connects it to
the equator.

It is for this very reason that mediaeval astronom-
ers tried to compile their catalogues with the use of
ecliptic coordinates, notwithstanding that equatorial
coordinates are easier to calculate by observations,
since such calculations do not stipulate to define the
ecliptic plane. The position of the ecliptic depends on
the motion of the Earth around the Sun and requires
the use of sophisticated methods for its calculation,
which, it turn, lead to additional systematic errata in
the coordinates of all stars. The discovery of the fact
that the ecliptic fluctuates over the course of time led
to the use of equatorial star coordinates in catalogues
instead of the ecliptic system. This system is still used
– the “advantage” of the ecliptic system is a thing of
the past.

3. 
THE METHODS OF MEASURING EQUATORIAL

AND ECLIPTIC COORDINATES

Let us briefly consider a number of actual meth-
ods used for the estimation of equatorial and eclip-
tic coordinates. We shall relate a certain simple geo-
metric idea that such measuring instruments as the
sextant, the quadrant and the transit circle employ in
their construction.

Let us assume that observer H is located in point
ϕ on the surface of the Earth (see figs. 1.3 and 1.4).
It is rather easy to define line HN' that is oriented at
the celestial North Pole and the parallel line ON. Next
we have to define the meridian that crosses point H
and mount a vertical wall on Earth surface that shall
go along this meridian, qv in figs. 1.3 and 1.4. Marking
the direction of the celestial pole on this wall as HN',
we can also indicate the equatorial like HK', which is
parallel to OK, by means of laying an angle π—

2 from
direction HN'. Right angle N'HK' can be divided into
degrees, which gives us an astronomical instrument
for angular measurements – a quarter of a divided cir-
cle positioned vertically. Modern meridian instru-
ments are based on this instrument as well – it can
be used for measuring star declinations, or their
equatorial latitudes, and also for marking the mo-
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ments when stars cross a given meridian, or the so-
called vertical.

A series of independent consecutive measurements
makes it feasible to estimate the equatorial plane for
the latitude of observation with high enough preci-
sion. At the same time, as it is obvious from the above
elementary celestial mechanics, a measurement of
longitudes requires a fixation of moments when the
stars cross the meridian. This requires either a suffi-
ciently precise chronometer, or an auxiliary device
providing for fast measurements of longitudinal dis-
tances between the star that interests us and a fixed
meridian. At any rate, longitudinal measurements are
a substantially more subtle operation. Therefore it is
to be expected that mediaeval astronomers’ meas-
urements of direct ascensions are cruder than their
declination measurements.

In order to measure the ecliptic coordinates of
stars observer H must assess the celestial position of
the ecliptic first. This operation is sophisticated
enough and stipulates a good understanding of pri-
mary elements of solar and telluric motion. Ancient
methods of measuring the declination angle between
the ecliptic and the equator as well as the position of
the equinoctial axis with the aid of the armillary
sphere or the astrolabe are described in [614] and a
wealth of other sources. It has to be noted that in
order to measure the ecliptic coordinates of a series

of stars one needs a timekeeping device of some sort
in order to compensate the daily rotation of the Earth
and keep the orientation at the equinoctial point
constant.

The obvious complexity of this task led to the fol-
lowing: for actual calculations of ecliptic coordinates
astronomers would either use formulae of the celes-
tial sphere’s rotation or celestial globes with equato-
rial and ecliptic coordinate grids. The knowledge of
equatorial coordinates would allow calculating their
ecliptic equivalents. Naturally enough, there were in-
evitable errata resulting from lack of sufficient pre-
cision in the estimation of the comparative positions
of the ecliptic and the equator, as well as the attitude
of the equinoctial axis.

This very concise discussion of methods used for
the measurement of ecliptic coordinates permits the
estimation that the mediaeval astronomers are most
likely to have used the following algorithm:

1) They would calculate the equatorial coordi-
nates, the latitudinal measurements being more pre-
cise than the longitudinal.

2) Next they would estimate the position of the
ecliptic and the equinoctial axis in relation to the
equator.

3) Finally they would convert the equatorial co-
ordinates into their ecliptic equivalents with the aid
of special measurement instruments or trigonomet-

Fig. 1.3. The principle of stellar coordinate measurement. Fig. 1.4. Measuring the coordinates of a star that passes a
meridian.



ric formulae (or, alternatively, with the use of a ce-
lestial globe with a double coordinate grid).

Moreover, since all the ancient measurement tools
were inevitably installed upon the surface of the
Earth, the above algorithm is the only real method of
calculating the ecliptic stellar coordinates. Since a
measuring instrument installed on the surface of the
Earth takes part in daily rotation of the Earth, the in-
strument in question is invariably tied to the equa-
torial coordinate system.

The application of our statistical methods to the
data provided by the Almagest catalogue yielded a
confirmation of the above algorithm’s usage, as we
shall demonstrate below.

4. 
THE MODERN CELESTIAL SPHERE

In order to date an old star catalogue by the nu-
meric values of stellar coordinates contained therein,
we must be able to calculate the positions of stars on
the celestial sphere for various points of time in the
past. The information that we use for reference is the
existing description of the celestial sphere in its mod-
ern state. The only data of importance are the coor-
dinates of stars, as well as their magnitude and proper
motion rate.

Jumping ahead, we can remark that the dating
method that we suggest is only applicable if the re-
spective positions of stars alter with the course of
time. The rotation of the entire celestial sphere re-
sulting from a transition to another coordinate sys-
tem cannot be used for the purposes of independent
dating. We shall discuss this in more detail below.

Let us discuss the characteristics of the stars that
we shall refer to in our research.

The magnitude of a star in a modern catalogue is
the number that represents its brightness. The lower
the value, the brighter the star. There is an old tradi-
tion of indicating said values in star catalogues. The
Almagest contains the magnitude values of all the stars
it lists. The brightest stars are indicated as the stars of
the first magnitude, the less bright ones correspond
to the second magnitude and so on. Modern cata-
logues use the same scale for referring to the bright-
ness of a given stars. However, stellar magnitudes can
also be expressed as fractions. For example, Arcturus,

which possesses the magnitude of 1 in the Almagest,
has the magnitude of 0.24 in “The Bright Star
Catalogue”, a modern source ([1197]), and Sirius, also
a star of the first magnitude in the Almagest, possesses
the magnitude of –1.6 in the modern catalogue. Thus,
Sirius is brighter than Arcturus, although Ptolemy be-
lieved them to be equally bright.

The matter might be that in the antiquity the
brightness (or the magnitude) of a star was estimated
by the observer in a very approximated fashion. Now-
adays stellar magnitude is estimated with the photo-
metric method. A comparison of stellar magnitudes
contained in the Almagest to their modern precise
values as given in the work of Peters and Knobel
([1339]) demonstrates that the discrepancy doesn’t
usually exceed 1 or 2 measurement units.

In our calculations of actual positions of stars in
the past we were primarily referring to the bright star
catalogue ([1197]), which contains the characteristics
of circa 9000 stars up to the eighth stellar magnitude.
Let us remind the reader that one can only see the
stars whose magnitude is up to 6 or 7 with the naked
eye. According to Ptolemy’s claim, the Almagest star
catalogue contains all the stars from the visible part
of the sky up to the 6th magnitude.

Ptolemy was exaggerating – there are more stars
with magnitudes of 6 and less in the visible part of
the sky than in the Almagest catalogue. This is one of
the reasons why the attempts to identify the Almagest
stars with the stellar positions calculated “in reverse”
lead to ambiguities (see Chapter 2 for more details).
On the other hand, it would be natural to assume
that all the stars that were actually observed by Ptol-
emy or his predecessors still exist and can be found
in the modern catalogue ([1197]).

J. Bayer, a prominent XVII century astronomer,
suggested a new system of referring to stars in a con-
stellation. He suggested using letters of the Greek al-
phabet instead of a verbal description of a given star’s
position in a constellation. The brightest star of a
constellation would be indicated by letter α, the sec-
ond brightest one – by letter β, and so on. Later on,
Flamsteed (1646-1720) devised a special numeration
for stars in a constellation – more specifically, the
westernmost star of a constellation was indexed as 1,
the next one to the east – as 2, and so on. Flamsteed’s
numbers and Bayer’s letters are often used in combi-
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nation for referring to a star (32 α Leo and so on).
Apart from that, some of the stars have individual
names. Such “named” stars are comparatively rare –
individual names were only assigned to stars that had
special significance in ancient astronomy. For in-
stance, 32 α Leo is called Regulus.

We have used the following characteristics of stars
from the modern catalogue ([1197]):

1. Direct ascension of a star for the epoch of 1900,
which is transcribed as α1900 below, expressed in
hours, minutes and seconds.

2. The declination of a star for the same epoch tran-
scribed as δ1900 and measured in degrees, arc minutes
and seconds.

3. Stellar magnitude.
4. Proper motion rate of a given star. The proper

motion rate is comprised of two elements, the first one
being the star declination fluctuation rate and the sec-
ond – the rate of its direct ascension alteration. How-
ever, the coordinate grid of longitudes and latitudes on
a sphere isn’t uniform. The distances between adja-
cent meridians diminish closer to the poles; therefore,
the stellar velocity component of direct ascension gives
one a wrong idea of the true, or “visible” velocity of a
star on the celestial sphere in the direction of the par-
allel. Therefore, some modern star catalogues give the
stellar velocity component of the direct ascension re-
duced to the equator. This means the value is multi-
plied by the declination cosine, which makes it possi-
ble to interpret it as the local Euclidean length of the
stellar velocity vector projection over the equator (the
parallel). This permits a comparison of the first stellar
velocity components regardless of their proximity to
the pole. If the velocities aren’t reduced in this fashion,
such comparisons require additional calculations.

Catalogues BS4 ([1197]) and BS5 (online source)
that we have used, the velocities are reduced to the
equator, which isn’t the case with catalogues FK4
([1144]) and FK5 (online source). Oddly enough,
this fact isn’t always mentioned in the descriptions of
astronomical catalogues. The form of the direct as-
cension velocities has to be estimated from their ac-
tual numeric values.

The values of proper star motion rates are rather
small. They don’t normally exceed 1" per year – the
fastest of the stars visible to the naked eye, such as ο2

Eri, µ Cas, move at the rate of 4" per year.

The trajectories of stellar motion for the time in-
tervals that interest us (2-3 thousand years) can be
considered straight, which means that each of the
star’s coordinates on the celestial sphere change
evenly. This approximation is only valid for areas that
lay at some distance from the pole, obviously enough.

The standard coordinate system for the celestial
sphere as given in the modern star catalogues is cus-
tomarily based on the equatorial coordinates for the
epochs of 1900, 1950 and 2000 a.d. We have chosen
the system of equatorial coordinates for the beginning
of 1900 a.d. Further calculations and coordinate sys-
tem conversions for a given epoch t were based on this
system.

First and foremost, in order to date the Almagest
catalogue we shall need the coordinates of stars with
high proper motion rates. Naturally, we shall only
consider the fast stars that are believed to be listed in
the Almagest.

We have refrained from discussing the issue of
whether or not the Almagest stars were identified cor-
rectly. We shall consider it in detail below. In order to
solve the identification problem we must know
whether a given star had an individual name in the
ancient catalogues. The information about the me-
diaeval names of stars was taken from catalogues BS4
([1197]) and BS5 (online source).

In order to date the Almagest catalogue by proper
motion rates we shall require the following two lists
of stars from the modern catalogues. We shall merely
describe them herein; the actual lists can be found in
Annex 1.

We shall refer to the first list as to the list of “fast”
stars. In the first stage of said list’s compilation we
have selected all the stars whose speed by one of the
coordinates at least is greater than 0.1" per year. This
list was subsequently reduced to the stars that either
have Bayer’s Greek letter or Flamsteed’s number in
their name. Thus, we have rejected the stars that are
a priori useless for the dating for the Almagest. The
matter is that nearly every star identified by the as-
tronomers as one of the Almagest stars has an index
in either Bayer’s or Flamsteed’s system, or both; also,
if a star from the Almagest is identified as one that
lacks such indices, this identification is always rather
ambiguous ([1339]). The reason is clear enough. The
catalogues of Bayer and Flamsteed were already com-
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piled in the epoch of early telescopic observations, or
the XVII-XVIII century. If a given star is omitted
from those catalogues, it is either too dim or too dif-
ficult to tell apart from the celestial objects in its im-
mediate vicinity.

There may be other complications in the same
vein; therefore, one can hardly assume that a star of
this sort can be veraciously identified as an Almagest
star and that its position was measured with sufficient
precision by the “ancient” astronomers.

The above selection gave us a list of “fast” stars
visible with the naked eye, which can be found in
modern star catalogues and identified as Almagest
stars. Quite naturally, the veracity of such identifica-
tions requires a separate research. We shall consider
this problem below.

Our list of “fast” stars visible to the naked eye can
be found in Table P1.1 of Annex 1.

The second list of stars is the list of named stars.
It is contained in Tables P1.2 and P1.3. In Table P1.2
the stars are arranged by names, and in Table P1.3 –
by respective numbers from the Bright Star Catalogue
([1197]). This list contains all the stars which have in-
dividual names according to BS4 ([1197]), or which
had such names in the past (Arcturus, Aldebaran,
Sirius etc).

The lists of fast and named stars intersect – the
same star can have a visible proper motion rate and
an individual name. Such stars are the most useful for
the dating of the Almagest.

5. 
“REVERSE CALCULATION” OF OBJECTS’
POSITIONS ON THE CELESTIAL SPHERE. 

THE FORMULAE OF NEWCOMB-KINOSHITA

5.1. Necessary formulae

Having the modern coordinates and proper mo-
tion rates of stars at our disposal, we can compile a
sufficiently precise star catalogue for any epoch in
the past. By “sufficiently precise” we mean the preci-
sion that corresponds to modern astronomical the-
ories, which is quite sufficient for our purposes. Such
precision can be considered absolute in comparison
to that of the old catalogues.

We had to perform retroactive star position cal-

culations quite a few times for different epochs. We
would first calculate the positions of stars on the ce-
lestial sphere for year t in coordinates α1900 and δ1900,
and then convert those into ecliptic coordinates lt and
bt for epoch t.

Let us cite the necessary formulae that allow the
conversion of coordinates αs and δs into coordinates
ls0 and bs0 for any epochs s and s0. These formulae ac-
count for precession and proper star motion. Said for-
mulae, as well as fig. 1.5, which illustrates them, were
taken from [1222]. They are based on Newcomb’s the-
ory as modified by Kinoshita. The actual coordinate
conversion procedure is described in the next section
(5.2). In these formulae time moments s0 and s are
counted backwards from the epoch of 2000 a.d. in
Julian centuries, and θ = s0 – s. See fig. 1.5.

Let us however note that the discrepancies between
the corollaries made according to the actual theory of
Newcomb and its modification made by Kinoshita
([1222]) that we have used are of no consequence in-
sofar as our purposes are concerned. For any time
moment t of the historical interval under considera-
tion (between 600 b.c. and 1900 a.d.) the discrepan-
cies between the ecliptic coordinates of a star calcu-
lated according to Newcomb’s theory and those ob-
tained with the use of its modified version ([1222])
are negligibly small in comparison to the errors of the
Almagest. We have used [1222], since it gives the for-

(1.5.4)
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mulae for precession compensation in a format con-
venient for computer calculations.

5.2. The algorithm for calculating past
positions of stars

Let us provide a detailed description of the algo-
rithm used for the calculation of star catalogue K(t),
which reflects the condition of the celestial sphere
for year t with sufficient precision, according to New-
comb’s theory. Here t is a randomly chosen epoch
from the historical interval under consideration
(namely, one between 600 b.c. and 1900 a.d.). Epoch
t is calculated backwards into the past from the epoch
of 1900 in Julian years, in other words, t = 1 corre-
sponds to the epoch of 1800, t = 10 – to the epoch of
900 a.d., t = 18 – to 100 a.d., etc. The discrepancy of
several days that results from the differences between
the Julian and the Gregorian calendar, and leads to
the situation where the epoch of 100 a.d., for in-
stance, fails to coincide with the epoch of 1 January
100 a.d. is of no importance whatsoever.

The calculated star catalogues K(t) shall serve us
for comparison with the old catalogue under study
(such as the Almagest) with different values of t. Here
t shall stand for a random assumed dating of an old
catalogue. Thus, calculated catalogues K(t) must be
transcribed in ecliptic coordinates for epoch t. As it
has been pointed out, all known old catalogues are
compiled in ecliptic coordinates, be it Ptolemy’s Al-
magest or the catalogues of As-Sufi, Ulugbek, Coper-
nicus, Tycho Brahe etc.

Let us assume that the modern equatorial coordi-
nates of a star in a catalogue (such as [1197]) are α0 =
α0

1900, δ0 = δ0
1900. These coordinates reflect the position

of the star in question for 1900 a.d. in the spherical
coordinate system, whose equator corresponds to the
Earth’s equator in 1900 a.d. The equator is defined by
the plane that is orthogonal to the axis of the Earth’s
rotation. Let us remind the reader that this plane’s po-
sition changes over the course of time. We have to cal-
culate the coordinates lt, bt, or the spherical coordinates
whose equator coincides with the ecliptic, or the plane
of the Earth’s rotation around the Sun for epoch t.
We should do the following for this purpose.

Step 1. We have to calculate the star’s coordinates
α0(t), δ0(t) for time moment t in the equatorial co-

ordinate system for 1900 a.d. Bear in mind that the
position of the stars on the celestial sphere changes
over the course of time in relation to any fixed sys-
tem of coordinates. The required calculations of the
star’s position are based on the known proper mo-
tion rates vα, vδ of the star by each of the coordinates
α1900, δ1900 (see Table 4.1, columns 5 and 6). We shall
come up with the following for non-reduced proper
motion rates:

α0(t) = α0
1900(t) = α0 – vα · t,

δ0(t) = δ0
1900(t) = δ0 – vδ · t.

Indeed, we can consider the proper motion rates
of each star by the coordinates α1900, δ1900 to be con-
stant. The minus in the formulae cited above results
from the retroactive nature of calculations; the ve-
locity rate symbols vα, vδ correspond to the normal
flow of time.

Before we can actually use this formula, we have
to convert all the source values into a single meas-
urement system. For instance, we can measure α0(t)
and δ0(t) in radians, and the velocities vα, vδ – in (rad
÷ year) · 10–2.

Step 2. We have to shift from coordinates α1900,
δ1900 to coordinates l1900, b1900. We shall come up
with coordinates l0(t), b0(t) of our star for the moment
t in spherical coordinates based on the ecliptic of the
epoch of 1900 a.d. This is what we get:

These formulae permit an unequivocal recon-
struction of the values of β0(t) and α0(t), since –90°
< b0(t) < 90° and |l0(t) – α0(t)| τ 90°. The value of ε0

corresponds to the declination angle between the
ecliptic of 1900 a.d. and the equator of 1900 a.d. We
refer the reader to the formula of 1.5.3, where one has
to let s0 = –1 in order to make the transition between
2000 a.d. and 1900 a.d.

Step 3. We have to make a shift from coordinates
l1900, b1900 to the auxiliary coordinates l1 and b1, which
are also tied to the ecliptic of 1900. However, they
have a different longitudinal reference point, which co-
incides with the intersection of the ecliptic of 1900 a.d.

(1.5.5)
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and that of epoch t, or ∏1900 and ∏(t). This transition
conforms to the following formulae:

l1(t) = l0(t) – ϕ,

b1(t) = b0(t)

ϕ = 173°57'38.436" + 870.0798"t + 0.024578"t2. (1.5.6)

Arc ϕ between the vernal equinox point of 1900 on
the ecliptic ∏1900 and the intersection of ∏1900 and
∏(t) conforms to the formula (1.5.1) if we’re to assume
that s0 = –1 and θ = –t. Then the ecliptic ∏(s0) in
fig. 1.5 shall correspond to the ecliptic ∏1900. Ecliptic
∏(s) in fig. 1.5 shall represent the ecliptic of epoch t,
which is of interest to us. Indeed, the time t is counted
backwards from 1900 a.d. in centuries, whereas the re-
mainder of θ = s – s0 is counted forwards from epoch
s0, also in centuries. Since we have agreed on s0 = –1,
which corresponds to 1900 a.d. (2000 – 100 = 1900),
we have to choose θ = –t in order to make the epoch
s = s0 + θ correspond to epoch t under consideration
in our formula (1.5.1).

Step 4. Next we have to make the transition from
coordinates l1, b1 to coordinates l2, b2. These are spher-
ical coordinates tied to the ecliptic ∏(t), whose only
difference from the ecliptic coordinates lt, bt is due to

the choice of the longitudinal reference point. In co-
ordinates l2, b2 this point corresponds to the inter-
section of ecliptics ∏1900 and ∏(t). The formulae of
transition from l1, b1 to l2, b2 correspond to the for-
mulae (1.5.5). Instead of ε0 we have to take the angle
ε1 between ecliptics ∏(t) and ∏1900:

ε1 = –47.0706"t – 0.033769"t2 – 0.000050"t3.

This expression is derived from the formula (1.5.2)
where s = –1 and θ = –t.

Step 5. Finally, we have to make the transition
from coordinates l2, b2 to the ecliptic coordinates lt,
bt. This transition conforms to the following for-
mulae:

lt = l2 + ϕ + Ψ, bt = b2,

where ϕ is defined in (1.5.6) and Ψ is defined by for-
mula (1.5.4) with s0 = –1 and θ = –t, therefore

Ψ = –5026.872"t + 1.1314"t2 + 0.0001"t3.

The sequence of steps 1-5 as described above is il-
lustrated in fig. 1.6.

Fig. 1.6. The sequence of steps that we use for reverse calculations of stellar positions and their past coordinates.



Let us conclude by pointing out that all the calcu-
lations necessary for the dating of a given star cata-
logue can be performed without accounting for the
Newcomb-Kinoshita theory. We shall consider this in
more detail below. The Newcomb-Kinoshita theory is
only used in order to obtain additional information
concerning the errata in the estimation of the eclip-
tic plane made by the author of the catalogue. The
value of these discrepancies is the auxiliary factor that
confirms the correctness of our corollaries. See
Chapters 6 and 7.

6. 
ASTROMETRY. ANCIENT ASTRONOMICAL

MEASUREMENT INSTRUMENTS 
OF THE XV-XVII CENTURY

In Section 3 we have considered the general con-
ception of angular measuring devices used in as-
tronomy, which is important to us since it enables us
to estimate the position of the equatorial line on the
celestial sphere with sufficient precision.

Let us assume that the observer’s line of eyesight
is directed along half-line HK', which moves along
the line of the equinoctial in its daily rotation with-
out any tergiversation. The attitude of half-line HK'
will naturally depend on the geographical latitude.
We can define the plane HLM, an orthogonal quad-
rant parallel to the equatorial plane, which crosses the
celestial sphere precisely along the equinoctial, qv in
fig. 1.7. It is therefore possible to construct a station-
ary device in said point of telluric surface, oriented by
the north-south meridian, which allows marking the
equator on the celestial sphere visually. This permits
precise estimations of equatorial stellar latitudes –
during their crossing of the quadrant’s vertical plane,
for instance. As we have already pointed out, the meas-
urement of equatorial latitudes was hardly a compli-
cated task for a professional astronomer of the XIV-
XVI century. It required nothing but accuracy and
sufficient time for observations. In particular, it has to
be expected that a careful observer could not make a
grave systematic error in the estimation of stellar dec-
linations for a given year.

Now let us see how the simple general idea de-
scribed above was implemented in real mediaeval in-
struments.

The first instrument is the meridian circle, or the
so-called transit circle as described by Ptolemy (see fig.
1.8). The instrument looked like a flat metal ring of a
random radius installed on a reliable support vertically
in the plane of the local meridian. The circle was
graded (into 360 degrees, for example). Another ring
of a smaller diameter was placed inside the larger ring;
it could rotate freely, remaining in the same plane as
the larger ring (fig. 1.8). There are two little metallic
plates with pointers attached to two opposing points
on the inner ring (marked P in fig. 1.8); the pointers
point at the grades found on the external ring. The de-
vice is installed in the plane of the local meridian with
the aid of a level and the meridian line whose direc-
tion is defined by the shadow of a vertical pole at mid-
day. Then the zero mark on the external ring of the
instrument is synchronised with the local zenith.

The instrument described above can be used for
measuring the height of the Sun at given latitude. One
must quickly turn the inner ring at midday until the
shadow of one plate P covers the other plate P com-
pletely. In this case, the position of the pointers on the
plates shall tell us the height of the Sun with the aid
of the grade marks on the external ring. It has to be
pointed out that the instrument’s indications are to be
read after one fixes the plates in their proper posi-
tions. This tells one the height of the Sun already after
midday. Moreover, the meridian circle can measure the
angle between the ecliptic and the equator.

The second instrument is the astrolabon as de-
scribed by Ptolemy, which is more frequently referred
to as “astrolabe” in our days. The latter term is me-
diaeval in origin. According to the Scaligerian his-
tory of astronomy, the meaning of the term “astro-
labon” has been changing over the course of time.
We are told that “in deep antiquity”, or around the
very beginning of the new era, the term “astrolabon”
was used for referring to the instrument that we shall
describe shortly. Ptolemy used one of those. However,
in the Middle Ages the instrument in question was al-
ready known as the armillary sphere, or “armilla”.
Some modern astronomers are of the opinion that
Ptolemy describes the armillary sphere or the astro-
labon in his “Almagest”, and not the actual astrolabe
(see [395], for instance). According to Robert Newton,
a renowned astronomer, “it is likely that around the
end of the Middle Ages the term ‘astrolabe’ referred
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to the device used for measuring the height of a ce-
lestial body above the horizon. As for the device we
describe herein [in accordance with Ptolemy’s indi-
cations – Auth.], by that time it was better known as
the armillary sphere, which is the distant ancestor of
the modern telescopes’ bearings” ([614], page 151).

In order to avoid confusion with terms, we shall
describe the two instruments separately – Ptolemy’s as-
trolabon and the astrolabe, or the mediaeval instru-
ment whose name is virtually identical to that of Ptol-
emy’s astrolabon. The primary elements of the astro-
labon’s (armilla’s) construction are shown in fig. 1.9.
In fig. 1.10 we see the principal scheme of the medi-
aeval armillary sphere. Fig. 1.11 shows us “the medi-
aeval armillary sphere – of Ptolemy’s type, according
to historians. Its diameter equals 1.17 metres. This in-

strument was manufactured when Ptolemy’s epoch
was already considered ancient – it belonged to Tycho
Brahe, the famed XVI century astronomer” ([1029],
page 13). The implication is that astronomical in-
struments remained the same for fifteen hundred
years. As we can see, the instruments of the “ancient”
Ptolemy from the second century a.d. and the XVI
century scientist Tycho Brahe were almost identical,
as though they were made in the same mediaeval
workshop. An ancient drawing of Tycho Brahe’s large
armillary sphere can be seen in fig. 1.12.

We must now describe the correct use of this in-
strument to the reader and also relate the astronom-
ical principles of its construction. The main element
of the armillary sphere comprises two metallic rings,
perpendicular to one another and rigidly joined to-

Fig. 1.7. Measuring the latitude of a star. Fig. 1.8. The armillary circle.

Fig. 1.9. A scheme of the astrolabon (armilla). Fig. 1.10. A scheme of the armillary sphere.



gether in points E1 and E2. Let us henceforth refer to
the rings as the “first” and the “second” (see fig. 1.9).
The first ring rotates around the axis NS, which is
parallel to the axis of telluric rotation. The centre of
both rings is point O; P1P2 is the perpendicular to the
second ring’s plane.

Let us describe how one uses the armilla in order
to measure the angle between the ecliptic and the equa-
tor, for example. The most appropriate time for such
measurements falls over the day of summer or winter
solstice. The corresponding point on the orbit of the
Earth is marked O' in fig. 1.13. It doesn’t matter
whether it corresponds to summer or winter solstice.
Let us consider the plane that crosses the radial vector
CO', where C is the Sun, and the Earth axis is indicated
as NO'. Since O' is the solstice point, this plane will be

orthogonal to the plane of the ecliptic, crossing the
Earth surface along the meridian, qv in fig. 1.13.

Let us assume that the armilla is installed some-
where along this meridian. The instrument can be lo-
cated anywhere on the surface of the Earth, but the
measurements must begin at midday, which is when
the instrument shall be on the meridian that is the
intersection of said plane and the surface of the
Earth. We assume the observer to know the direction
of the Earth axis in this part of the Earth; therefore,
the armilla’s NO axis shall be oriented in this direc-
tion, parallel to axis NO', qv in fig. 1.13. Then, by ro-
tating the first metallic ring around the armilla’s axis
NS, we shall install this ring in the plane of the merid-
ian, which will happen when the shadow from the ex-
ternal edge of the ring shall cover the inner part of
the ring exactly. Finally, having fixed the plane of the
first ring, we must make the second ring orthogonal
to the first, so that its inner part would be covered
by the shadow cast by its outer part. Fig. 1.13 demon-
strates that the second ring shall end up right in the
plane of the ecliptic as a result of these manipulations
(more precisely, it shall be parallel to the ecliptic
plane). As we have fixed both rings in the necessary
position, the perpendicular P1P2 to the second ring
shall also be fixed, thus marking the pair of polar
points P1 and P2 on the first ring. We shall therefore
be able to measure the angle P1ON with sufficient
precision; it is obviously equal to the angle between
the ecliptic and the equator.

We have described the method that was allegedly
used by the ancient astronomers. Despite the geo-
metrical simplicity of the idea, one can clearly see the
numerous complications that introduce different er-
rata into the numeric value of the measured angle. In
particular, the observer must know the following pa-
rameters:

a) the direction of axis ON, which is parallel to the
axis of the Earth;

b) the day of solstice;
c) the moment of midday in this point of Earth

surface.
R. Newton made the following justified remark:

“The primary shortcoming of this instrument is that
one has to be rather quick when one uses it, since the
rotation of the Earth has a negative effect on the pre-
cision of the device” ([614], page 150). Indeed, in
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Fig. 1.11. The armillary sphere made in the XVI century; it
used to belong to Tycho Brahe (1598). It is almost indistin-
guishable from the instrument used by the “ancient” Ptolemy
in the II century A. D. These instruments are most likely to
date to the same epoch – the XV-XVII century. Taken from
[1029], page 13.



fig. 1.13 we can see that the rotation of the Earth be-
gins to turn the instrument around axis O'N, which
renders the above considerations invalid.

Strictly speaking, the points O (the centre of the
armilla) and O' (the centre of the Earth), as seen in
fig. 1.13, are different points. The distance between
the two is equal to the radius of the Earth. However,
this discrepancy is negligibly small for the above cal-
culations. Therefore, we can assume that O = O' in-
sofar as these measurements are concerned, as shown
in fig. 1.13.

Let us come back to the measurements of the eclip-
tic coordinates with the aid of the armilla.

After the correct installation of the device as de-
scribed above, it is tuned to the ecliptic coordinate
system for a short time, namely, the plane of the sec-
ond ring E1E2 is parallel to the ecliptic plane. Points
E1 and E2 shall correspond to the solstice points. Both
rings are presumed graded. Therefore, we can unam-
biguously define points R1 and R2 on the second ring,
which shall correspond to the equinoxes. They divide
arcs E1 and E2 in two halves. Points R1 and R2 are omit-
ted from fig. 1.13 so as not to make the illustration too
cluttered. Thus, what we have on the second ring is a
scale with a fixed initial reference point ( R1, for in-
stance, which is the vernal equinox point). We can
thus measure ecliptic longitudes and latitudes of
points on the celestial sphere, such as stars.

However, let us reiterate that the daily rotation of
the Earth quickly sets off the precision of the instru-
ment. Therefore, one needs a precise chronometer in
order to compensate for the rotation of the Earth and
tune the instrument. This is how the modern meas-
urement instruments are constructed – the rotation
of the Earth is compensated by the automatic track-
ing system.

In order to facilitate the measurements of celestial
objects’ ecliptic coordinates, a third ring is usually
added to the armillary sphere – a rotating one. The
axis of its rotation can, it turn, slide along the second
ring, which is positioned in the plane of the ecliptic.
We shall omit these details, since they are of little im-
portance to us.

Let us now consider the third instrument, or the
quadrant (see fig. 1.14). This instrument is based on
the meridian circle and has a sharp pointer at its cen-
tre, which is perpendicular to the plane of this circle.

The shadow from the pointer falls over the lower
(northern) side of the meridian circle and can move
within the confines of one quarter of the circumfer-
ence. Therefore, in order to measure the height of the
Sun it suffices to grade one quarter of the ring. The
quadrant is therefore a plate of some sort with a
graded quarter of a circle installed in the plane of the
meridian. The height of the Sun above the horizon
at midday is indicated by the shadow of the pointer
that falls over the scale.

In fig. 1.15 we see the astronomical quadrant from
a mediaeval book of 1542 by Oronce Fine ([1029],
page 19).

Fig. 1.16 shows us a small quadrant with a radius
of 39 centimetres, which belonged to Tycho Brahe
([1029], page 26).
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Fig. 1.12. “The large armillary sphere of Tycho Brahe for
measuring the angular distances between luminaries” (from
Mechanics Rejuvenated by Astronomy, a work of Tycho
Brahe. Windsbeck, 1598. Taken from [926], page 62.
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In fig. 1.17 we see Tycho Brahe’s sextant with a ra-
dius of 1.55 metres, and in fig. 1.18 – another sextant
of Tycho Brahe of the same size ([1029], page 26).

In fig. 1.19 we see the astronomer Hevelius por-
trayed performing measurements with the aid of the
sextant ([1029], page 67).

The fourth instrument is the astrolabe (see fig.
1.20). The mediaeval astrolabe is a round metallic
plate with a diameter of some 50 centimetres, with a
graded ring mounted rigidly on one of its edges. At
the centre of the ring there is a mobile plank with vi-
sors mounted on an axis perpendicular to the centre

of the circle. The instrument can be suspended ver-
tically; there is a special loop at the edge of the plate
that serves this purpose. The plane of the vertically
suspended circle could be directed at a celestial body,
likewise the rotating mobile plank. This is how the
body’s height above the horizon was measured. Apart
from that, after the measurement of the height of the
Sun at midday, one could also measure the observa-
tion latitude. The precision of such measurements
must have been rather low due to the primitive na-
ture of the method used. It is believed that the in-
strument in question could measure the observation

Fig. 1.13. A scheme of utilising the armilla for the measurement of the angle between the equator and the ecliptic, for instance.

Fig. 1.14. A scheme of the quadrant.
Fig. 1.15. An astronomical quadrant from a mediaeval book
by Finney. Taken from [1029], page 19.
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Fig. 1.16. A small quadrant of Tycho Brahe (1598). Taken
from [1029], page 26.

Fig. 1.17. The sextant of Tycho Brahe (1598). Taken from
[1029], page 26.

Fig. 1.18. Another sextant that belonged to Tycho Brahe
(1598). Taken from [1029], page 26.

Fig. 1.19. The astronomer Hevelius is using a large sextant
for observations, assisted by his wife. Ancient engraving dat-
ing to 1673. Taken from [1029], page 67.
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point latitude with the precision of several arc min-
utes ([614]).

In fig. 1.21 we see an old astrolabe of 1532 (Georg
Hartmann, Nuremberg). We see the front and the re-
verse of the astrolabe.

In fig. 1.22 we reproduce an old picture of the fa-
mous mediaeval astronomical instrument known as
“the Turkish tool”, or “torquetum” (“turquetum”).
Specialists in the history of science tell us the follow-
ing: “The ‘torquetum’ (or ‘turketum’), whose name
can be translated as ‘the Turkish tool’, was character-
istic for the mediaeval European astronomy, and em-
bodies the intellectual heritage of Ptolemy as well as
the Islamic tradition… The torquetum was used for
measuring all three types of astronomical coordinates
and the conversions between different types of coor-
dinates, which was stipulated by the Ptolemaic plan-
etary theory” ([1029], page 17). The instrument
shown in fig. 1.22 belonged to Petrus Apianus (1497-
1552). We are therefore told that the mediaeval Turks
“revived” the Ptolemaic theory of measurements,
manufacturing the necessary tools after many years
of oblivion – namely, fifteen hundred years later than
the “ancient” Ptolemy.

As we are beginning to realise, the mediaeval Ot-
toman turketum was a contemporary of the Ptole-
maic devices. These instruments were made in the
XV-XVII century.

Fig. 1.20. A scheme of the astrolabe.

Fig. 1.21. The astrolabe of Georg Hartmann from Nuremberg. We see both the front and the reverse sides of the instrument.
Taken from [1029], page 15.



7. 
TIMEKEEPING AND TIMEKEEPING DEVICES 

IN MEDIAEVAL ASTRONOMICAL
OBSERVATIONS

As we have pointed out earlier, in order to conduct
precise astronomical observations, the ancient as-
tronomers needed a chronometer with a minute hand
or some equivalent thereof. It would be expedient to
recollect the history of mediaeval timekeeping in this
respect in order to compare the precision of mediae-
val timekeeping devices to the relative precision of the
coordinates included in mediaeval star catalogues,
the Almagest catalogue in particular.

In general, it has to be mentioned that the very
concept of time was rather idiosyncratic in the Middle
Ages. The analysis of the ancient documents demon-
strates that this concept differed from the modern to

a great extent. In particular, time was often consid-
ered “anthropomorphic” before the invention of the
clock – more specifically, its character and speed
would depend on the nature of events. As we already
reported in Chron1, “before the XIII-XIV century
timekeeping devices were a rarity and a luxury.
Sometimes even the scientists would lack them. The
Englishman Valcherius … regretted the fact that the
precision of his lunar eclipse observations of 1091
was impaired by the absence of a chronometer”
([1461], page 68). Timekeeping devices of low preci-
sion were introduced in the Middle Ages: “the usual
timekeeping devices in mediaeval Europe were sun-
dials … hourglasses and clepsydrae. However, sun-
dials were only useful for sunny days, and clepsydrae
remained a rarity” ([217], page 94).

In fig. 1.23 we see the astronomical rings of the
XVII-XVIII century, which were used for telling the
time by the Sun in particular. The method of their use
is shown in an old drawing that we reproduce in fig.
1.24. In fig. 1.25 one sees an old hourglass.

Mass production of clepsydrae falls over the XIII-
XIV century. Clepsydrae were used by Tycho Brahe
(1546-1601). He used them in order to measure plan-
etary velocities ([954], page 36). In the Middle Ages
“the clepsydra was a popular device, its low precision
notwithstanding. In order to make them more pre-
cise, the constructors of the clepsydrae had to take
into account the fact that the water doesn’t leave the
vessel at a constant speed – the latter depends on the
pressure, that is to say, the greater the level of water
in a vessel, the greater the pressure. The constructors
of the clepsydrae improved the construction some-
what, making it more complex, so that the clock
wouldn’t slow down as the vessel on top emptied…
However, clepsydrae had the tolerance of around 10-
20 minutes per day, and even the best scientists of
the epoch couldn’t think of a way to make them sub-
stantially more precise” ([288], pages 32-33).

At the end of the IX century candles were used
widely for timekeeping purposes. For instance, Alfred,
King of England, took candles of different length along
on his voyages and ordered to light them one after
another ([217], page 94). This method of timekeep-
ing was still used in the XIII-XIV century – in the
reign of Charles V and other monarchs of the epoch.
Timekeeping candles were known as “the fire clock”.
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Fig. 1.22. A mediaeval instrument known as turketum
(“Turkish”). Designed for estimating several types of celestial
objects’ coordinates. It was also utilised in Ptolemaic plane-
tary theory (Werner, 1533). Taken from [1029], page 18.



Many countries preserved this timekeeping method
for a long time.“The Japanese, for example, used time-
keeping devices consisting of various incense sticks
leaning one against another as recently as 200 years
ago. One could ‘smell’ the hour by their aroma, as it
were. The Europeans used ‘fire clocks’ as well – they
were candles with special markings” ([954], page 37).
We can see that all these “ancient” timekeeping meth-
ods were used relatively recently; one must think, they
were invented not so very long ago.

“Fire clocks” were used in China for a long time
as well. Special kinds of powdered wood were made
into a paste, which would then be rolled into sticks
of various shapes – spirals and so on. Occasionally,
metal balls were tied to these sticks in certain places.
As the stick burned, they would fall into a vase and
make a sound. “The precision of ‘fire clocks’ also left
much to be desired – apart from the difficulty of mak-
ing perfectly uniform sticks and candles, the speed of
their combustion always depended on the atmos-
pheric conditions (wind, fresh air supply etc)” ([288],
pages 30-31).

The hourglass was another popular timekeeping
device of the Middle Ages.“The precision of the hour-
glass depends on the stability of the sand flow. In
order to make the hourglass more precise, one needs
to use sand of as uniform a texture as possible, soft,
dry and forming no lumps inside the vessel. Mediae-
val craftsmen of the XIII achieved this by boiling the
mixture of sand and marble dust with wine and
lemon juice, skimming it, then drying and repeating
the process nine times over. All of these measures
notwithstanding, the hourglass remained a time-
keeping instrument of low precision”([288], page 30).
In the XII century, the secular rulers of Mons who
wanted to begin a process at a given time had to con-
sult with the ecclesiastic authorities about the time of
day” ([1037], pages 117-118).

Nowadays it is believed that the first mention of a
mechanical chronometer dates from the end of the
VI century a.d. ([797]). Then the devices disappear
for a long time to resurface already during the Ren-
aissance. According to the specialists in the history of
sciences,“the first mechanical clock was made by the
ingenuous and curious Italian craftsmen in the XIII
century” ([954], page 38). The principle of their con-
struction is simple enough – a rope with a weight on
its end is woven onto a horizontal shaft. The weight
pulls the unwinding rope, which rotates the shaft. If
we are to attach a hand to the shaft, it will tell the time.
Despite the simplicity of the principle, its practical re-
alisation required a stable slow rate of shaft rotation.
This purpose was achieved by means of using nu-
merous wheels, which transferred the rotation of the
shaft to the hand, and clever regulators of all kinds,
installed to make the shaft rotation rate more or less
uniform. “Mechanical clocks were constructions of
formidable size. Enormous clockwork mechanisms
were installed on the towers of cathedrals and palaces”
([954], page 38). A flywheel from Tycho Brahe’s clock
had 1200 notches and a diameter of 91 centimetres”
([288], page 35).“The wheels of some clocks weighed
hundreds of kilos. Due to the large weight of their
parts and substantial friction, wheel-based mechan-
ical clocks required lubrication and constant main-
tenance. The daily tolerance rate of such clocks
equalled several minutes” ([288], page 35).

“It was only in the XV century that the spring re-
placed the shaft and rope in clockwork mechanisms.
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Fig. 1.23. An instrument of the XVII-XVIII century that was
used for solar timekeeping, among other things. Taken from
[1029], page 21.



The weight of clocks was reduced dramatically. Crafts-
men of the early XVI century mastered the con-
struction of mobile spring-based clocks that weighed
3 or 4 kilos. They were the rather heavy ancestor of
the modern mechanical watch” ([954], page 39).

The invention of the clock with a minute hand
must have been followed by the compilation of a
more or less precise longitudinal star catalogue. What
is the significance of the minute hand? The matter is
that the celestial sphere and all the objects seen upon
it rotates at the speed of one degree per 4 minutes;
therefore, a star passes 15 arc minutes per minute of
time. Star catalogues contain coordinates of stars in-
dicated with arc minutes – therefore, in order to make
the catalogue precision tolerance equal circa 15 arc
minutes, one needs to be able to track the time in-
terval of one minute on a timekeeping device. The tol-
erance of circa 10 minutes (as in the Almagest, for in-
stance) requires the ability of measuring 40-second
intervals reliably. Higher precision of a catalogue re-
quires a higher precision of timekeeping devices. Of
course, the observers could use their intuition for the
measurement of short time intervals (one minute
and less), but this would introduce subjective errata
into the catalogue.

Thus, the ancient astronomers who claimed their
catalogues to have a tolerance of 10' needed to have
a chronometer with a minute hand or some analogue
thereof at their disposal. However, Ptolemy, who gives
us a detailed description of all the instruments re-
quired for the measurements of stellar coordinates
(the armillary sphere etc) doesn’t mention any chron-
ometers and altogether refrains from the discussion
of the timekeeping problem and its direct relation to
the observations of the celestial sphere, which is in a
constant motion.

The hypothesis that chronometers with a minute
hand could exist in the II century a.d. contradicts
Scaligerian information about the history of time-
keeping devices, as we shall shortly see.

Also, the above implies that if we really discover
some sort of catalogue whose precision tolerance
equals 10 arc minutes as declared by the author of the
Almagest, and this tolerance is verified by statistical
research, we shall have a good reason to assume that
the compiler of the catalogue was using a clock with
a minute hand or some equivalent of it.

According to the history of timekeeping, the hour
hand was introduced into the mechanism of a clep-
sydra in the XIII century a.d. ([544], Volume 4, page
267) or even later. The timekeeping devices in ques-
tion had no pendulum, and were therefore of low
precision. It was only in the XIV century a.d. that dif-
ferent cities of mediaeval Europe got tower clock-
work mechanisms (Milan in 1306 and Padua in
1344). It is reported that they were built by a certain
Dondi Horologiu. Clocks with springs moved by a
weight were only brought into existence in the XV
century. Walther was the first to use them for astro-
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Fig. 1.24. The astronomical rings of Gemma Frisius. “A port-
able equatorial instrument that could be used at any latitude
… for solar timekeeping, as well as many other approximated
astronomical observations (Apianus, 1539). Taken from
[1029], page 21.



nomical observations, followed by many others up to
Tycho Brahe ([544], Volume 4, pages 267-268).

According to the history of sciences, “various me-
chanical clocks only had the hour hand initially. In the
middle of the XVI century the minute hand was in-
troduced, and the second hand’s invention took place
200 years later” ([954], page 39). The invention of the
mechanical clock’s minute hand is usually dated to
1550 a.d. ([288], page 36). It is believed that the first
chronometer was only constructed in the XVIII (1785,
by John Harrison). Harrison lived around 1683-1776
([1029], page 139). Harrison’s chronometer is a com-
plex enough instrument; it can be seen in fig. 1.26.

The modern mechanical clock, including the pen-
dulum, was invented by Huygens in 1657 ([797]). In
1561 the Kassel observatory was built – a unique con-
struction, since it was the first to embody the princi-
ple of rotating roof (a device used in most modern
observatories). After the death of Regiomontan and
Walther, Landgrave Wilhelm IV of Hessen-Kassel
(1532-1592), the creator of said observatory, con-
ducted extensive observations of immobile stars (see
Chapter 11 below). In general, “the primary purpose
of the Kassel observatory was the compilation of a star
catalogue … The most remarkable innovation was the
clock used for timekeeping and measurements in-
volving the motion of the celestial sphere. The con-
struction of a clock whose precision was adequate
for this purpose owes its successful implementation
to the mechanical genius of Bürgi [1522-1632 –
Auth.], and, in  particular, to his discovery that the
clock can be regulated by the pendulum – apparently,
he hadn’t made any attempts of making this inven-
tion public, and so the pendulum was reinvented be-
fore it could be acknowledged by everyone [in re the
discovery of Galileo and Huygens – Auth.]. By 1586,
the positions of 121 stars were registered with the
greatest care, but the complete catalogue, which was
supposed to contain over 1000 stars, has never been
finished” ([65], page 118).

The activity of Tycho Brahe, who worked in the
same epoch, soon completely outshone the efforts of
the Kassel observatory. It is curious enough that the
scientists of the Kassel observatory already used re-
fraction compensation to counteract the errata in-
troduced by the refraction of sunlight in the atmos-
phere ([65], page 118).
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Fig. 1.26. The first chronometer created by John Harrison in
1735. The height of the instrument is 408 millimetres. Taken
from [1029], page 140.

Fig. 1.25. Ancient hourglasses. Cambridge, Whipple Museum.
Taken from [1029], page 31.
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It was only in the time of Huygens that the clock
became an integral part of many astronomical in-
struments: “One of the inventions made by Huygens
completely revolutionized the art of precise astro-
nomical observation. Huygens attached the pendu-
lum to the clock that was set in motion by weights,
in such a manner that the clock maintained the pen-
dulum in motion, which, in turn, regulated the mo-
tion of the clockwork.

It is likely that Galileo planned to unite the pen-
dulum and the clockwork mechanism towards the

end of his life, but we have no proof that he ever
managed to make this idea come alive.

This invention has given us the opportunity to
make precise observations, and, noting the gap be-
tween two stars crossing the meridian, deduce their
angle distance to the west or the east, knowing the
speed of the celestial sphere’s motion.

Picard was the first to appreciate the importance
of this invention for astronomy, introducing correct
timekeeping in the newly built Paris Observatory”
([65], page 177).


